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Abstract— Dual arm robot picking of large objects is a
common task in industrial settings, which is often accomplished
besides a human operator, as a part of a more complex
execution pipeline. This not only requires the simultaneous
control of multiple arms to achieve the desired motion of the
object and the maintenance of the right amount of force to
ensure a stable grasp, but it has also to guarantee a safe and
trustworthy human-robot interaction. One way to achieve the
latter requirements is to ensure the execution of human-like
robot motions, which can be easily understood and predicted
by humans. In this paper, we present a technical framework
that upon a passivity-based adaptive force-impedance control
for modular multi-manual object manipulation, integrating it
with a vision-based system to increase the effectiveness and
generalizability of the manipulative action, as well as with a
human-like Cartesian motion planning algorithm, to enable
dual arm picking of large objects. We tested our approach
in experiments with real manipulators during different types
of large objects picking.

I. INTRODUCTION

Multi arm robotic manipulation is a key feature to perform
cobotics-mediated tasks in industrial settings, such as dual
arm picking and handling of large objects, besides and
together with the human operator [1]. This is a multi-
faceted problem, which requires not only (1) to manage
the coordination and the interaction with the environment
of multiple manipulators [2], [3], but also (2) to ensure that
such interaction is performed in unstructured environment,
in a way that is safe and predictable for humans. For what
concerns point (1), which deals with moving the object in
the desired configuration and holding it firmly during the
motion, different solutions have been presented in literature,
ranging from the definition of a low-level control law to
the design of a high-level motion planning algorithm [4].
Among the most recent results, it is worth mentioning [5],
where the authors proposed a motion generation method for
dual arm fast grabbing and tossing of boxes, and [6], where a
framework for bimanual grasping of large momentum objects
was developed. However, despite the significant theoretical
value, these methods were usually deployed in controlled
environments, where the model of the object is known in ad-
vance, and the system can have access to precise information
regarding the position and orientation of the object. In [7] the

This work was supported by European Union’s Horizon 2020 Research
and Innovation Program under Grant Agreement No. 101017274 (DARKO);
the Italian Ministry of Education and Research (MIUR) in the framework
of the CrossLab and FoReLab project (Departments of Excellence).

1Research Center E. Piaggio and Department of Information En-
gineering, University of Pisa, Pisa, Italy; 2Department of Mechani-
cal Engineering, KU Leuven, Ghent, Belgium. ∗Corresponding author:
marco.baracca@phd.unipi.it

Camera RGB-DVision Node 

HL Motion PlannerHybrid Control Hybrid Control

Franka Control 
Interface (FCI)

Franka Control 
Interface (FCI)Arm 1 Arm 2

𝑥𝑑 ,
𝑒𝑒𝑓𝑑 𝑥𝑑 ,

𝑒𝑒𝑓𝑑

𝑥 𝑥

𝜏𝑖𝑛 𝜏𝑖𝑛
Robot 
state

Robot 
state

Contact point,
OBB

PointCloud

𝜏 𝜏

Fig. 1. General scheme of the ROS framework. In orange the blocks
represent the different ROS nodes implementing the different parts presented
in our work while in blue the blocks represent the external hardware.

authors developed a modular hybrid force/impedance control
suitable for multi-arm manipulation, which can be applied to
a system with an arbitrary number of manipulators deployed
in a general configuration. However, even though the authors
provided strong results from a control point of view, the
assumptions made in this work in terms of knowledge of the
geometry of the object and the contact point locations prevent
an easy implementation in real unstructured scenarios.

For what concerns point (2), a key enabler for the de-
ployment of multi-arm manipulator systems besides humans
is safety. One of the solutions to achieve this goal is to
ensure that robot movements can be easily predictable by
the human operator, i.e. the movements should embed and
exhibit human-like characteristics [8]. In [9], the authors
analyzed human motion during dual arm picking, using
Principal Component Analysis, and exploited these results
for motion generation and control, targeting dual arm robotic
object manipulation. However, this method is based on the
definition of specific points of interest in the human kine-
matic chain (e.g. shoulder, the tip of the thumb, middle and
little fingers), whose translation to generic robotic kinematic
chains is not straightforward, limiting the number of artificial
systems to which it can be applied. Furthermore, the method
requires recording two specific human datasets (one for the
reaching task and one for the dual arm manipulation) to
extract the needed Principal Component representation.

A possible approach to ensure human-like motions of
manipulators that can be kinematically dissimilar from the
human example is the one that we proposed in [10]. More
specifically, we leveraged a representation of the human hand
motion based on functional Principal Component Analysis to
design a motion planning algorithm in the Cartesian domain.
However, the approach was designed for single-arm systems
and a strategy to extend it to multi-arm manipulation is still
missing.

In this work, we present a technical integration framework
implemented in Robot Operating System (ROS), which takes



Fig. 2. Scheme representing the formulation of the modular control for
dual-arm manipulation. This figure shows the two main parts of the control
law: 1) the mapping between the object’s centroid position x and the end-
effector position xee; and 2) the force exchanged between the object and the
manipulator.

advantage from our human-like motion generation approach
in [10] and the outcomes from [7], for dual-arm grasping and
picking of large boxes. To enable a proper integration of the
two methods, we exploited the fact that the reference motion
in [7] is defined in the Cartesian domain and it permits the
integration of a large number of planners without requiring
particular adaptation of the motion planned to the kinematic
of the system. The framework is complemented with a vision
component, which exploits the data of an RGB-D camera
to estimate the position and dimensions of the box to be
manipulated and infer the possible contact point location
to perform grasping (relaxing part of the hypothesis of the
original work and improving the deployment capability in
unstructured environments).

An overview of the proposed integration framework is
presented in Fig. 1. The manuscript is structured as follows:
first, we provide a brief explanation from a theoretical point
of view of the single parts composing the overall motion and
control framework, and a description of the ROS technical
integration framework. Afterwards, we describe the experi-
mental setup we developed to test the framework, reporting
and discussing the output of the experiments. Finally, we
discuss the future steps to be addressed.

II. METHODS

In this section, we report a description of the different
building blocks composing the framework. First, we start
describing the hybrid force/impedance control scheme pre-
sented in [7], which is the base upon which we develop the
entire system. The two main reasons behind this choice are:
1) the modularity nature of its design permits it to be applied
to an arbitrary number of manipulators without increasing
the complexity and 2) its definition in the Cartesian domain
permits easy integration with generic planning algorithms
without any requirement to adapt them to the kinematic
structure of the system. After that, we move to describe the
human-like motion planning algorithm used to compute the
reference motion to be fed to the control law. In the end, we
describe the vision pipeline implemented to make the system
able to perceive the position and the dimension of the box
to be picked.

A. Modular Multi-arm Control

In this section, we will briefly report the structure of the
hybrid force/impedance control framework applied in this

framework. For further detail regarding the theory behind
this approach we refer the interested reader to [7].

The main concept behind this control approach is to define
a single point of interest xxx of the object and use it as a
reference for the controller of each manipulator involved.
Assuming that the manipulators are in a stable contact
configuration with the box, we can define the vector ee pppcr to
express the relative position of the point xxx with respect to the
end effector position xxxee (see Fig. 2). With this information,
we can compute the Jacobian matrix JJJcr ∈ R6×6 as:

JJJcr =

[
III3 [ee pppcr]

T
×

0003 III3

]
, (1)

where [·]× is the skew-symmetric operator. In this way, the
manipulator joint velocities q̇qq ∈ Rn can be mapped onto
the Cartesian velocity of the desired object point of interest
through:

ẋxx = JJJcrJJJee(qqq)q̇qq = JJJ(qqq)q̇qq. (2)

At last, the dynamics of the manipulator in Cartesian space
can be defined with respect to xxx in the following way:

MMMC(qqq)ẍxx+CCCC(qqq, q̇qq)ẋxx+ fff g(qqq) = JJJ−T (qqq)τττ in + JJJ−T
cr wwwext , (3)

where MMMC(qqq), CCCC(qqq, q̇qq) ∈R6×6 and fff g(q) ∈R6 are the iner-
tia, Coriolis and gravitational terms reported in the Cartesian
domain, τττ in ∈ Rn is the torque command and wwwext ∈ R6 is
the external wrench applied at the robot end-effector. Please
note that if the Jacobian matrix JJJ(qqq)∈R6×n is not invertible,
its pseudoinverse can be used.

Moving to the definition of the torque control input, during
non-prehensile multi-arm manipulation, the controller has
two main objectives: 1) apply the desired force ee fd on the
surface of the object to ensure a stable grasp and 2) move
the object to the desired position xxxd . To fulfil both tasks,
a hybrid force/impedance controller was used. The control
torque can be expressed as τττ in = τττ imp + τττ f rc where τττ imp,
τττ f rc ∈Rn stand for the input torques for motion control and
contact force control, respectively.

1) Variables Impedance Control: To avoid the genera-
tion of high-intensity forces during the interaction with the
environment, an impedance control structure was used for
motion control. The control law can be defined at the center
of rotation of the object with the following equation:

τττ imp = JJJT (qqq)(KKKCx̃xx+DDDC ˙̃xxx+MMMC(qqq)ẍxxd +CCCC(qqq, q̇qq)ẋxxd) (4)

with x̃xx = xxxd − xxx. In the above formulation, the stiffness and
damping matrices are represented by KKKC, DDDC ∈ R6×6, and
xxxd is the desired object pose expressed to the robot frame.

To address the conflict between desired motion and force,
in [7] the authors proposed an adapting stiffness matrix
eeKKKC ∈ R6×6 defined in the robot end-effector frame. The
following is a description of the adaptive stiffness policy:

eeKKKC = diag([kt,x,kt,y,ρimpkt,z,kr,x,kr,y,kr,z]) (5)

ρimp =


1 If δimp ≤ eex̃z

0.5(1− cos(π
ee x̃z
δimp

)) If 0 ≤ eex̃z < δimp

0 Otherwise

(6)



The parameters ki R≥0 represent the default stiffness coeffi-
cients for translation and rotation, while eex̃z define the pose
error along the end-effector’s z-axis frame. The distance δimp
denotes the threshold for stiffness adaptation along the z-
direction of the end-effector. When desired motion conflicts
with a secure grasp, this adaptation prioritizes contact forces,
hence the overall stability.

2) Force control: Each manipulator must apply a contact
force ee fd along the z-direction of the end-effector frame
when performing object-grabbing manipulation tasks. The
contact force operating along the z-direction of the end-
effector is represented by ee fext,z ∈ R in the force control
law. As an outcome, the following represents the expression
of the proposed control law:

τττ f rc = JJJT
ee(q)[

eeRRR,0003×3]
T [0,0,ρ f rc

ee f f rc]
T (7)

ee f f rc =
ee fd + kp

ee f̃ext + ki

∫
ee f̃extdt + kd

ee ˙̃fext (8)

where f̃ext =
ee fd +

ee fext,z. The force controller output f f rc
is transformed from the end-effector frame ee f f rc to the
robot frame. The controller’s behaviour is shaped by the
proportional, integral, and derivative gains kp, ki, and kd .
When the manipulator deviates significantly from the set-
point in the z-direction of the end-effector’s frame, a control
variable labelled ρ f rc as described below disables the force
controller, preventing unwanted motion, particularly in con-
tact loss scenarios.

ρ f rc =


0 if 2δ f rc ≤ |eex̃z|
0.5(1+ cos(π(

ee x̃z
δ f rc

−1))) if δ f rc ≤ |eex̃z|< 2δ f rc

1 otherwise
(9)

with δ f rc ∈ R>0 being the threshold at which the force
controller gets disabled.

B. External Force Estimation

To permit to our framework to use force control, the
value of the force applied by the robot on the grasped
object is needed. The easiest way to gather this information
is to introduce a Force/Torque sensor at the contact point
and directly measure the interaction force. However, reliable
F/T sensors are usually very expensive and fragile, and the
complexity of the entire setup would increase dramatically.

In [11], a set of solutions to estimate external torque
applied to a manipulator exploiting only proprioceptive in-
formation and the knowledge of the dynamic model of the
robot are presented. Among these, in our work, we decided
to use the formulation based on the generalized momentum
observer which does not require joint acceleration and the
inversion of the inertia matrix. For the sake of brevity, we
report here only the final formulation of the estimated joint
torque rrr(t) ∈Rn, referring the reader to the previously cited
paper for further details:

rrr(t) = KKKO

(
MMM(qqq)q̇qq−

∫ t

0
(τττm + β̂ββ (qqq, q̇qq)+ rrr)ds− ppp(0)

)
,

(10)

where β̂ββ (qqq, q̇qq) = ĝgg(qqq)−ĈCC
T
(qqq, q̇qq)q̇qq.

Under the assumption that the manipulator configuration
is not a kinematic singularity and knowing the location of
the contact point, which in our case corresponds to the tip
of the end-effector, we can compute the estimation of the
generalized external force as ŵwwext = (JJJee(qqq)T )+rrr, where +
denotes the generalized pseudoinverse [12].

C. Human-like Motion Planning Algorithm
One of the main goals of this work is to enrich the

framework in [7] by enabling the generation of human-like
motions during dual arm-picking. This should likely favour
the deployment of the manipulator systems besides humans.
To this aim, we exploited the results of our previous work
[10] for the implementation of the motion planning algorithm
of the overall framework. The main reason behind this
choice is that our approach is defined in the Cartesian space,
permitting an easy integration with the control framework
reported in [7].

To quickly summarise the theoretical base of the plan-
ner, we exploited functional Principal Components Analysis
(fPCA) to extract the main characteristics of human upper
limb motions and we embedded them in a motion planning
algorithm. For the sake of space in the following, we report
only a brief explanation of the approach while, for a more
detailed explanation, we refer the interested reader to [13]
for the results of fPCA on the Cartesian human hand motion
and to [10] for the details of the motion planning algorithm.

Taking into account the single DoF, the fPCA permits
the reconstruction of a generic motion x(t) as a weighted
sum of functional Principal Components (fPCs) previously
extracted analysing a dataset of recorded movement as x(t)≈
x̄+ S0(t)+∑

smax
i=1 αiSi(t), where x̄ denotes the average pose

of the hand, S0(t) is the average trajectory observed over
all trajectories in the dataset, αi is the weight associated
to the i-th basis element Si(t) and smax is the number of
components used. The peculiarity of the basis of functions
obtained through fPCA is that is ordered in terms of the
explained variance that each element accounts for. In this
way, the minimum number of element can be used to achieve
a certain level of representation of the original dataset.

Starting from this result, if we have a set of constraints for
our desired trajectory (for example initial and final position,
velocity and acceleration), we can define an equation system
to find the coefficients x̄ and αi as

1 S1(t0) . . . S5(t0)
1 S1(t f ) . . . S5(t f )
0 Ṡ1(t0) . . . Ṡ5(t0)
0 Ṡ1(t f ) . . . Ṡ5(t f )
0 S̈1(t0) . . . S̈5(t0)
0 S̈1(t f ) . . . S̈5(t f )




x̄

α1
α2
α3
α4
α5

=


x(t0)−S0(t0)
x(t f )−S0(t f )
ẋ(t0)− Ṡ0(t0)
ẋ(t f )− Ṡ0(t f )
ẍ(t0)− S̈0(t0)
ẍ(t f )− S̈0(t f )

 . (11)

With the obtained weights, the desired trajectory can be
computed by exploiting the weighted sum defined in the
fPCA formulation to compute the desired motion as x(t) =
x̄+S0(t)+∑

5
i=1 αiSi(t). Given the Cartesian definition of this

planning algorithm, inside the proposed framework can be
used both for the planning of the single-arm reaching motion



Fig. 3. An example of the output of the vision pipeline proposed.

Fig. 4. Block diagram of the visual pipeline

and the desired motion of the box in the multiarm control
scheme chosen.

D. Vision Pipeline

To accomplish the manipulation task, robots need to be
able to make contact with the object. This calls for precise
information about the Cartesian positions of the contact
points. In the literature, there are a large number of different
approaches for object pose estimations ranging from standard
image analysis to deep learning techniques [14]. In this
section, we will describe the solution implemented to test
the framework. However, it is important to underline that any
method capable of returning a bounding box of the object to
be grasped can be used instead of the proposed one

The first step involves uniform downsampling, resulting in
lower computational costs while preserving the point cloud’s
essential features. A statistical filter is then used to correct
distortions caused by noise and imperfect segmentation. The
mean distance between a set of points is determined and
compared to a threshold based on the standard deviation
from the mean of the average distances to remove outliers.
The implementation of this type of filtering is motivated
by the incomplete knowledge of the object’s surface. The
sampled parts exhibit common defects caused by the real
sensor, namely imperfect homogeneity in point density and
the presence of ripples on the object’s surface. The filter
in question, considering an average distance between points,
proves to be more efficient in areas where point scarcity is
lower, such as at the edges of the sensor’s known surface. In
these areas, not only is the point scarcity lower, but there
is also more noise due to the imperfect segmentation of
the object. After that, we apply a density-based clustering
algorithm, which is especially useful for identifying clusters
of arbitrary shapes. DBSCAN [15] has significant advantages
over methods such as k-means because it can identify clusters
of various shapes and distinguish noise points from clusters.
Finally, the minimum bounding box containing the cluster
obtained in the previous step is defined. This allows us
to easily determine the centroid and, using the object’s
dimensions, the required contact points to perform dual arm
grasping. In Fig. 3 we show an example of the results

obtained with our vision pipeline while in Fig. 4 a schematic
representation of the pipeline described above is depicted.

E. ROS Integration Framework

For the integration of the different parts, we exploited as
base ROS Noetic. More precisely, we developed a set of
ROS nodes implementing the different blocks and then we
put them in communication using ROS topics. In Fig. 1 we
can observe an overall scheme representing how the different
parts are connected. In our framework 3 different types of
nodes can be identified:

1) Vision Node: it takes as input the point cloud from the
camera and, exploiting the method described in II-D, returns
the Oriented Bounding Box (OBB) and the desired contact
point for each manipulator.

2) HL Motion Planner: it takes the information provided
by the vision node and the actual end-effector pose of
the manipulators to compute the desired trajectory using
the algorithm described in II-C. After that, it manages the
sending of the pose and force references to the hybrid control
nodes of each manipulator.

3) Hybrid Control: it receives as input the desired pose
and force from the planner and the actual state of the robot
from the Franka Control Interface (FCI) and computes the
desired torque command following the law described in II-A.
This command is sent to the FCI which manages the low-
level control of the hardware. The force estimation algorithm
presented in II-B is integrated in this node to avoid any delay
between these two parts.

III. EXPERIMENTAL VALIDATION

A. Experimental Setup

The experimental validation consists of a set of pick-up ac-
tions of a large box (40.5x42x31cm, 0.780 Kg). With respect
to [7], where the tests started with the object already grasped,
in our experimental validation the system also performs the
reaching motion from the starting configuration to the desired
contact position estimated through the camera. This was done
to test the capability of the proposed framework to establish
a firm grasp even not knowing the position and dimension
of the box in advance. The two main assumptions made
are: 1) the box has a homogenous density, which permits us
to approximate the centroid found with the vision with the
centre of mass of the object; and 2) we know in advance the
force required to perform a non-prehensile picking, which
depends on the weight of the object and the friction between
its surface and the end-effectors of the robots.

The experimental setup includes two Franka manipulators
positioned with a displacement of 1.3m along the local
frames’ y-axis, while sharing the same local orientation. A
soft-rubber hemispherical tip (similarly to [7]) is mounted
at the end-effector of both robots. This helps the robot
to achieve soft contact with the object and increase the
friction with the box surface, preventing it from overtak-
ing the force limits of the manipulators. The control pa-
rameters used for these tests are kt,x, kt,y, kt,z = 600N/m,
kr,x, kr,y, kr,z = 20N/rad, δimp = 1cm, δ f rc = 5cm, ee fd =



Fig. 5. Comparison of the manipulator’s actual trajectories (blue) and the
desired ones generated by the human-like planner (orange). The top row
represents Arm 1 and the bottom row Arm 2

Fig. 6. The estimated external forces at the tip of the end-effector are
shown in the global frame (Arm 1 in blue and Arm 2 in orange).

10N, [kp, ki, kd ]
T = [1.5, 0.3, 0]T and DC is chosen to

achieve critical damping behaviour. To implement the vision
part of the pipeline we used an Intel® RealSense™ Depth
Camera D415 placed behind the two manipulators. We
calibrated the relative pose between the camera and the
robots through a custom procedure exploiting the AprilTag
library.

B. Pick-up Results

A total of 18 pick-up tests were conducted with different
initial conditions. Out of these, 17 experiments yielded
successful outcomes, achieving the task of picking up the
box without any issues related to contact loss. In the one
remaining experiment, the result was unsuccessful during the
reaching phase due to the joint limits of the manipulators. A
set of snapshots depicting one of the tests performed can be
found in Fig. 7.

To evaluate the trajectory tracking precision, we computed
the Root Mean Square Error for each trial performed. The
means and the standard deviations over all the tests per-
formed for each arm are respectively 0.022± 5.44 · 10−04m
and 0.022 ± 5.47 · 10−04m. In Fig. 5 an example of the
trajectory performed is depicted.

In Fig. 6, we can see the estimated external force at the
end-effector. From this plot, we can observe that after the
first part during the reaching motion where the classical
impedance control is activated and the sensed forces are

related mainly to joint friction not represented in the dynamic
model, the hybrid control is activated and is able to set
the applied force to the desired one. What happens around
t = 50s is worthy of interest and deserves a more in-depth
discussion. We can observe a deviation from the desired
force of arm 1. This is caused by a position error of arm
2 which tries to push against the box. However, the system
can compensate for this error and maintain a firm grasp of
the object.

C. Human-likeness

After evaluating the effectiveness of the proposed ap-
proach in accomplishing the task, we move to evaluate the
Human-Likeness of the produced motion. Several peculiar
features were identified in human motion, such as arm pos-
tures and kinematic temporal behaviour [16]. However, most
of these metrics are mainly connected to an anthropomorphic
kinematic structure. For this reason, we focus on evaluating
the jerk of the motion produced by our framework. In fact, in
the literature, the minimum jerk behaviour of human motions
was extensively proven [17].

The averages of the median jerk at the Cartesian level ob-
tained for each arm are respectively (1.02±0.05) ·10−05m/s3

and (1.19± 0.03) · 10−05m/s3 (for the planned trajectory is
(0.19±0.03) ·10−05m/s3). We can observe that, even in the
presence of a hybrid control which manages the interaction
between the two robots, we achieve a low level of jerk in
the resultant motion of the two arms. Furthermore, even
though the tasks involved are different, the jerk obtained is
comparable with previous results [18].

IV. LIMITATION, CONCLUSIONS AND FUTURE
WORKS

In this work we propose a ROS framework that enables
to integrate the human-like motion generation in [10] and
the modular hybrid force/impedance control in [7], for the
autonomous pick-up of large boxes. The target scenario is
dual-arm robotic manipulation in unstructured environments,
besides and together with human operators, to ensure not
only the effectiveness, but also the safety and predictability
of the motion for humans. The framework integrates also
a vision layer, which exploits data from an RGB-D camera
to estimate the position and dimensions of the box to be
manipulated and infer the possible contact point location
to perform grasping, relaxing the hypothesis in [7] about
the knowledge of the location and geometry of the object.
We tested the framework with real manipulators, proving its
capability to accomplish the desired task under reasonable
assumptions. Furthermore, we evaluated the human-likeness
of the produced movement proving that the system can
maintain the desired characteristics. We acknowledge that
this is only the first step toward a completely autonomous
dual-arm system able to operate in daily living environments,
and it should be developed and improved under several
aspects.

To this aim, our future effort will be devoted to relax the
hypothesis on the knowledge of the force required to hold
firmly the object. This is related mainly to the inertia of the



Fig. 7. Snapshot of a pick-up task. The robots start from the initial configuration and reach the estimated contact points provided by the vision layer.
Then the framework starts to apply force and lift the box. In the end, the system put down the box in the original position.

object and the friction between the surfaces of the object and
the tip of the end effector. For inertial parameters, during
the testing of the overall framework, we performed some
preliminary evaluation on the feasibility of estimating object
mass exploiting the generalized momentum observer [12],
showing promising results. However, also the knowledge
of the center of mass location and inertial tensor plays an
important role in ensuring a stable grasp, also with objects
with not homogeneous density. A possible solution for this
problem could be found in the active sensing literature [19],
where the problem of optimal motion generation to minimize
parameter estimation uncertainty is addressed. In this way,
the system could perform exploratory movements and use
the contact forces gathered through the momentum observer
already implemented to estimate the inertial parameters re-
quired. Regarding the friction between surfaces instead, an
intriguing approach could be the integration of soft optical
tactile sensors as the tips of the end effector [20].

Another point to be addressed is the generalization of
this approach to objects different from boxes. In this sense,
an interesting approach for this step could be [21], where
the authors developed a framework capable of generating
a feasible grasp for different grippers relying on the de-
composition of general shapes into boxes. The extension
of our framework to multi-arm (i.e. more than two) object
picking is also envisioned, having the possibility of designing
systems with higher manipulation capability, and test them
in more unstructured environments, e.g. further developing
the vision system to deal with cluttered environments [22],
and addressing the generation of more complex tasks [23].
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